Learning Where to Classify in Multi-view Semantic Segmentation
نویسندگان
چکیده
There is an increasing interest in semantically annotated 3D models, e.g. of cities. The typical approaches start with the semantic labelling of all the images used for the 3D model. Such labelling tends to be very time consuming though. The inherent redundancy among the overlapping images calls for more efficient solutions. This paper proposes an alternative approach that exploits the geometry of a 3D mesh model obtained from multi-view reconstruction. Instead of clustering similar views, we predict the best view before the actual labelling. For this we find the single image part that bests supports the correct semantic labelling of each face of the underlying 3D mesh. Moreover, our singleimage approach may surprise because it tends to increase the accuracy of the model labelling when compared to approaches that fuse the labels from multiple images. As a matter of fact, we even go a step further, and only explicitly label a subset of faces (e.g. 10%), to subsequently fill in the labels of the remaining faces. This leads to a further reduction of computation time, again combined with a gain in accuracy. Compared to a process that starts from the semantic labelling of the images, our method to semantically label 3D models yields accelerations of about 2 orders of magnitude. We tested our multi-view semantic labelling on a variety of street scenes.
منابع مشابه
A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملRestricted Deformable Convolution based Road Scene Semantic Segmentation Using Surround View Cameras
Understanding the surrounding environment of the vehicle is still one of the challenges for autonomous driving. This paper addresses 360-degree road scene semantic segmentation using surround view cameras, which are widely equipped in existing production cars. First, in order to address large distortion problem in the fisheye images, Restricted Deformable Convolution (RDC) is proposed for seman...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملFaçade Segmentation in a Multi-view Scenario
We examine a new method of façade segmentation in a multi-view scenario. A set of overlapping, thus redundant street-side images exists and each image shows multiple buildings. A semantic segmentation identifies primary areas in the image such as sky, ground, vegetation, and façade. Subsequently, repeated patterns are detected in image segments previous labeled as “façade areas” and are applied...
متن کاملDiagnosis of brain tumor using PNN neural networks
Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014